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PREFACE

This report is published to provide coastal engineers with a formulation
and a set of nomographs for determining the breaking wave characteristics,
such as breaking wave height, depth of breaking, and angle of breaking wave
with a straight shoreline, as functions of the deepwater wave characteristics:
wave height, wave period, and wave angle. This formulation is necessary to
determine the littoral drift transport; however, to obtain such results, a
review of nonlinear wave transformation is presented. A "hybrid" wave ap-
proach based on linear (or Stokes third order) and cnoidal waves is proposed
as the best theory from available experimental data. The work was carried
out under the coastal structures program of the Coastal Engineering Research
Center (CERC).

This report was prepared by Bernard Le Mehaute, Professor and Chairman,
and John D. Wang, Associate Professor, Ocean Engineering, Rosenstiel School
of Marine and Atmospheric Science, University of Miami, Miami, Florida,
under CERC Contract No. DACW72-79-C-0005.

The authors acknowledge the assistance of Drs. J.R. Weggel and F.E.
Camfield, CERC, for the guidance provided during the course of the investi-
gation and for the review of the final report.

Drs. Weggel and Camfield were the CERC contract monitors for the report,
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CONVERSION FACTORS, U.S. CUSTOMARY TO METRIC (SI) UNITS OF MEASUREMENT

U.S. customary units of measurement used in this report can be converted to
metric (SI) units as follows:

Multiply by To obtain

inches 25.4 millimeters
2.54 centimeters

square inches 6.452 square centimeters
cubic inches 16.39 cubic centimeters

feet 30.48 centimeters
0.3048 meters

square feet 0.0929 square meters
cubic feet 0.0283 cubic meters

yards 0.9144 meters
square yards 0.836 square meters
cubic yards 0.7646 cubic meters

miles 1.6093 kilometers
square miles 259.0 hectares

knots 1.852 kilometers per hour

acres 0.4047 hectares

foot-pounds 1.35S8 newton meters

millibars 1.0197 x 10-3  kilograms per square centimeter

ounces 28.35 grams

pounds 453.6 grams
0.4536 kilograms

ton, long 1.0160 metric tons

ton, short 0.9072 metric tons

degrees (angle) 0.01/45 radians

- Fahrenheit degrees 5/9 Celsius degrees or Kelvins1

1To obtain Celsius (C) temperature readings from Fahrenheit (F) reading-, use
formula: C = (5/9) (F -32).

To obtain Kelvin (K) readings, use formula: K = (5/9) (F -32) + 273.15.
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SYMBOLS AND DEFINITIONS

A elliptic function

B elliptic function

C wave phase speed

E complete elliptic integral of the second kind

H wave height

H' unrefracted deepwater wave height

K complete elliptic integral of the first kind

Kr refraction coefficient

K8  shoaling coefficient

L wavelength

LC cnoidal wavelength parameter

L, linear wavelength

Q littoral transport rate

S beach slope

T wave period

U Ursell parameter HL2/d3

V(u,v) particle velocity

d stillwater depth

fH cnoidal shoaling function

g gravity

k wave number

p pressure

t time

x-y cartesian ordinates

angle of wave ircidence

T1 free-surface elevation

p density

t(x,z,t) velocity potential

b,o subscripts which refer to breaking or deepwater values, respectively
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TRANSFORMATION OF MONOCHROMATIC WAVES FROM DEEP
TO SHALLOW WATER

by
Bernard Le Mehaute and John D. Wang

.4

I. INTRODUCTION

An understanding of many nearshore phenomena relies on the ability to
predict the local wave climatology, given a deepwater wave description.
For example, a quantitative description of longshore sediment transport is
based on a knowledge of the wave characteristics in the surf zone. This
report presents methods for determining the changes in the characteristics
of a wave traveling over a variable bottom from deep water to shallow
water.

The acute sensitivity of the rate of littoral transport to wave
breaking characteristics implies an accurate determination of these
characteristics. The problem has numerous facets:

" (a) Given a deepwater unidirectional monochromatic "wave, what
are the breaking wave angle, depth of breaking, breaking wave height,
and related quantities?

(b) Given a multidirectional deepwater incident wave spectrum,
what is the distribution of breaking wave characteristics and the
"equivalent" monochromatic wave used to determine the littoral drift?

(c) How should a synoptic wave climatology be treated in order
to determine the rate of littoral drift and related quantities?

Only the first problem is addressed in this report. The relevant
literature is reviewed, and a new hybrid wave theory is proposed to
determine wave breaking characteristics on a sloped plane beach.

II, NONLINEAR WAVE TRANSFORMATION

1. Nonlinear Wave Shoaling.

It is generally assumed that the wave motion over a gentle slope
is the same as that on a horizontal bottom, and that there is no re-
flection nor wave profile deformation. The wave motion is then
determined so that the rate of transmission of energy or energy flux
is constant over varying depth.

The average energy flux through a vertical plane of unit width
perpendicular to the wave propagation is

F -av (gz + + V 2 udzdt (1)_av T t d



where

p = density

t = time

T = wave period

d = water depth

= free-surface elevation

g = gravity acceleration

, p = pressure

V(u,v) = particle velocity

z = vertical ordinate

In the general case, linear or nonlinear, where the flow motion
can be expressed by a potential function (x,z,t), the Bernoulli
equation yields

-t = gz + p + 1 XV2 (2
P22 (2)

and u = Cx so that the energy flux becomes

t+T T)

F .dxdt (3)
iw h st av T t -d tx

in which case ¢ can be expressed at any order of approximation, such as
given by a Stokesian power series. Even though classical solutions for
cnoidal waves are irrotational, the potential function is not expressed
but rather the solution for (n,u,v) is given; therefore, he energy flux
for cnoidal wave is determined from equation (1) where (V = u2 + w2).

The results of all the calculations pertinent to linear wave
theory and linear wave shoaling are given in Le Mehaute (197C).

Instead of expressing at a first order of approximation as in
the linear wave theory, p is expressed at a higher order in equa: ion
(3), the shoaling coefficient KS = It/Ho becomes not only a function
of d/L or d/Lo but also a function of the deepwater wave steepness,
Ho/Lo.

This calculation has been performed at a third order of approxi-
mation (Le Mehaute and Webb, 1964), and the fifth order of approximation
(Koh and Le Mehaute, 1966) based on the third-order solution and fifth-
order solution for a Stokesian wave as developed by Skjelbreia and
Hendrickson (1960). The first definition of Stokes for the phase velocity
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is used; i.e., the average horizontal water particle velocity over a
wavelength is zero. The results of such investigation are presented
in Figures 1 and 2.

The correction AH due to nonlinear effects never exceeds 5
percent and is more commonly of the order of 1 percent. These in-
vestigations show that:

(a) The nonline.ir shoaling coefficient is initially less than
the linear coefficient ,hen dL o ; 0.4, then becomes larger toward
shallow water until the wave oreaks.

(b) The Stokesian power series is not uniformly convergent, i.e.,
the function of d/L of higher order tends toward infinity when c/L tends
to 3mall values. Therefore, the "best" order of approximation is not
necessarily the highest order. For relatively deep water d/L > 0.25, the
fifth order of approximation would be the best insofar as wave height
transformation is concerned; for very shallow water d/L < 0.01, the
linear theory would be best. In the intermediate range the third-order
theory would be best, and therefore should be preferred overall because
of its range of applicability.

The second definition of Stokes for the phase velocity can also be
used; the average momentum over a wavelength is zero by addition of a
uniform motion. Yamaguchi and Tsuchiya (1976) indicate that the results
yield slightly larger values, at most a 7-percent increase for the
shoaling coefficient, than the results obtained by Le Mehaute and Webb
(1964).

The principle of conservation of energy flux has also been applied
to a cnoidal wave, and like the Stokesian wave the results depend on the
order of approximation and the definition of phd'e velocity. All these
investigations on cnoidal waves are based on ai. energy flux such as ex-
pressed by equation (1). Masch (1964) was the ;:'s to d,,al with this
subject; however, his wave theory is not consistc:.t, eve; erroneous,
(in the table of functions used by Masch in the shoakn4 of cnudal
wave, the water depth below MWL should be substitutea by ht, the hater
depth under trough), and the results are presented in a form which is
difficult to use. The relation to deepwater wave and sinusoidal theory
is not discussed and no attempt is made to follow the shoaling of a
specific wave.

A significant contribution to the shoaling of cnoidal waves is
given by Iwagaki (1968). Iwagaki treats the case of an approximate
solution of cnoidal wave in which he used the second definition of
phase velocity as given by Laitone (1961). The approximation is on the
value of the elliptic integral which is replaced by a simple function
of empirical ooefficients. Iwagaki shows that this simplification
actually covers a wide range of cases and allows him to simply in-
vestigate the shoaling of what he calls "hyperbolic waves." When the
energy flux in deep water (as computed using small-amplitude theory)
is equated to the energy flux in shallow water, described by first-
order hyperbolic waves, Iwagaki obtains

'1i
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Figure 1. The shoaling coefficient at the third order

of approximation (Le Mehaute and Webb, 1964).
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H 3  ) 2 /3c(H) 1/34
No 16 L (4)

According to Iwagaki (1968), this theory yields sufficiently accurate
results for Ursell parameter U ; 47. However, as pointed out by
Svendsen (1974), the theory of Iwagaki deserves to be regarded as a
practical solution to second-order cnoidal waves when the deepwater
wave steepness is smaller than 0.02 and the relative water depth is
smaller than 0.05. The matching of the Iwagaki hyperbolic wave with
the third-order Stokesian wave is shown in Figure 3.

The shoaling of the true cnoidal wave has been investigated by
Svendsen and Brink-Kjaer (1972), Svendsen (1974), and Svendsen and
Hansen (1977). They also give H/H. as function of d/Lo and Ho/Lo
(Fig. 4) and a computer-printed table. It can then be shown that for
large values of Ursell parameters the shoaling coefficient Ks  d-I
instead of d-1 /4 as given by the Green law (long wave linear theory).
Concurrently, Shuto (1974) arrives at very similar results.

Yamaguchi and Tsuchiya (1976) also carry out the same calculation
based on the two definitions of the Stokes wave velocity for the cnoidal
theory of Laitone (1961) and that of Chappelear (1962). However, an
arithmetic error has been found in the Laitone theory (Le Mehaute, 1968).

2. Comparison and Matching Between Various Theories.

As a wave propagates from deep water to shallow water it is
theoretically possible to determine the variation of wave height, wave-
lengths, etc. This could be done by applying the principle of con-
servation of energy flux to either the linear wave or the nonlinear
Stokesian wave, or the cnoidal and solitary wave. Since a Stokesian
wave rather applies in deep water, the transformation of water wave
should be followed with that theory for the largest value of relative
depth d/Lo and then switched to the cnoidal theory when d/Lo becomes
small. However, such a scheme implies that the theories can be matched
continuously, but there is a priori no reason why the ratio H/Ho should
be the same for the value d/Lo which corresponds to the limit'of validity

A0
of both theories. On the other hand, if the wave heights are matched,
then the energy flux will present a discontinuity (Fig. 5). The signifi-
cant feature is that the cnoidal wave height grows faster with decreasing
depth, although at intermediate depth its value is up to 10 percent less
than predicted by a Stokesian theory. Waves with wave steepness larger
than 2 to 3 percent will break at a depth where the cnoidal wave height
is only slightly larger than that of a Stokesian wave. Waves with small
wave steepness, however, such as swells, reach much smaller depth before
they break and consequently a major part of their shoaling process is
governed by the cnoidal wave theory. For these waves, the two theories
such as the Stokesian (first order or linear theory) and cnoidal wave
at a second order will yield significantly different results.

13
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Figure 5. Matching Stokesian (first order) and cnoidal
wave theory (Svendsen and Hansen, 1977).

These results (Fig. 5) show that no continuous transition is pos-
sible between the two theories. This means that it is not possible to find
a value of the water depth, d, where the curves for the two theories fit
smoothly together. If the Stokesian theory is used in deeper water and
changed to a cnoidal theory when the wave enters shallow water, there
will be a discontinuity in the variation of either wave height or wave-
length, or both, depending on which water depth is chosen for the switch.
Of course, the same will appear for all other quantities such as particle
velocities, pressure, etc., and the rate of change of these. Svendsen
(1974) shows that the limit of applicability of the cnoidal theory is
d/Lo < 0.1193 when 11 is small. Koh and Le Mehaute (1966) also showed
that the limit of applicability of the fifth-order Stokesian wave theory
is d/Lo > 0.10 when I/Lo  0.05 and d/Lo > 0.13 when H/Lo = 0.10 (see
Fig. 2).

There is a large difference between Stokesian and cnoidal wave
between d/Lo equal 0.1 and 0.3. In this region no known wave theory
fits very well. It could have been expected that a higher order
Stokesian theory would be the answer, but the investigation by Koh
and Le Mehaute (1966) shows that when d/Lo decreases the fifth-order
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/ approximation represents an even worse approximation than the third
order. Similarly, it is found that second-order cnoidal theory is
worse than first-order cnoidal theory for large wave steepness. This
is inherent to the point that both cnoidal and Stokesian power series
expansion in terms of the small parameters h/d and H/L respectively (
are nonuniformly converging series since the functions of d/L attached
to each power term blow up when d/L tends toward small values.

It is interesting that Yamaguchi and Tsuchiya (1976) found that
the shoaling coefficient given by Le M~haute and Webb (1964) (first
definition of Stoke's phase velocity) almost coincides with the
shoaling coefficient obtained from cnoidal theory developed by
Chappelear (1962) (second definition).

Shuto (1974) attempted to make a synthesis of all these theoriesin a simple and practical form by empirically matching these solutions.

Subsequently, he proposes the following law for practical purposes:
1 LOH 30

0 < d- 2 : The small-amplitude theory applies

30 LoH 50

27 < 2 < : Use Hd2/7  = constant

. 2 <  : se H 5/ 2  2 H1/2

so th Loll< Use H/[(2Lo 2 ,H) 2 constant (5)

equations seem to be the most realistic to remember from a
;,, the theoretical approaches. In the range where both cnoidal and third-

order Stokesian theory apply, the values of the shoaling coefficient
are very close to each other as shown in Figure 6 (Flick, 1978).

3T=2.48s

25 Ho/L.= 0032
I --- CNOIDALL

- STOKES third order
2.0 

Ur

S15-

IO

051 I
006 008 01 02 03 .04 05 06

Figure 6. Comparison between Stokesian third order and
cnoidal shoaling coefficient with experiments

(from Flick, 1978).
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Interestingly, the use of the linear wave theory to evaluate the
value of the shoaling coefficient extends much beyond the formal
validity of this infinitesimal wave theory. Similarly, the value of
the shoaling coefficient given by the Stokesian wave theory extends
into the area where the cnoidal theory fits best. This is due to the
fact that, the shoaling coefficient being the ratio of wave height

* H/Ho only, the increase in free-surface elevation under the crest is
partly balanced by the increase of free-surface elevation under the
wave trough. However, that the linear wave theory applies for the
shoaling coefficient does not mean that all wave characteristics
(wavelength, velocity components, pressure, acceleration) follow the
same principle; after the local wave height is obtained, all other

2 wave characteristics are determined by the appropriate theory.

3. Comparison Between Theory and Experiment.

A relatively large number of experiments have attempted to
verify shoaling laws; all have been conducted in laboratory wave flumes
with waves generated by wave paddle. Most of these experiments suffer
lack of accuracy because they were either done at too small a scale
and were subsequently subjected to significant scale effects such as
large viscous damping experiments (Iversen, 1951), or the wave paddle
generated not only monochromatic waves but harmonic components
(solitons) which introduced significant error and scattering
(Eagleson, 1956; Iwagaki, 1968).

There is actually considerable controversy whether waves of
steady-state profile exist, as demonstrated by Dubreuil-Jacotin (1934).
Theorists Benjamin and Feir (1967) and experimentalist Galvin (1970)
postulate that the disintegration of finite amplitude monochromatic
wave occurs in deep water even on horizontal bottom. There are as many
theoreticians who assume that a steady-state profile does exist as there
are experimentalists who do not notice the "creations" of solitons.

Use of a formulation developed by Mei and Le Mehaute (1966),
Peregrine (1967), and Madsen and Mei (1969) indicates that for a
sufficiently abrupt change in water depth, both a solitary wave and a
cnoidal wave disintegrate into multiple crests. These results have
been obtained numerically and verified experimentally. However, over
a relatively gentle beach, the wave period remains constant between
deep water and shallow water and no disintegration takes place. Dis-
integration takes place when the wave arrives on a reef. It seems
natural to assume that the difference between these two observations
is due to the difference in bottom slope. Beyjamin and Feir (1967)
show that waves are unstable if kd > 1.4; however, experiments by
Flick (1978) indicate that kd can be much larger without evidence of
wave disintegration or spectral smearing.

It is commonly accepted that a monochromatic wave arriving on a
rapid change of depth (in diffraction zone) gives rise to at least a
doubling of crests. Such phenomenon is due to the nonlinear con-
vective effects. Iwagaki and Sagai (1971) also investigated the

__ ,7



deformation of long waves over a gentle slope using the nonlinear long
wave theory and power series expansions. They found the shoaling
coefficient to be a function of beach slope when S ; .01. The steeper
the slope the smaller the shoaling coefficient, a fact which can be
attributed to partial reflection. In fact, due to friction effect, the
ratio H/Ho for a given value of d/Lo decreases instead of increases
(Sawaragi, Iwata, and Masayashi, 1976).

The first reliable experiments were conducted by Brink-Kjaer and
Jonsson (1973) and Flick (1978). Figures 7 and 8 show results for different
values of HO/LA. Flick separates the first, second, and third harmonics
from his wave data and is subsequently able to give a reliable ex-
perimental shoaling coefficient. Flick compares his results with
Le Mehaute and Webb (1964) (third-order Stokesian) and also with the
cnoidal solution of Svendsen and Brink-Kjaer (1972) in shallow water
(see Fig. 6).

The shoaling coefficient of a hyperbolic wave is also fairly well
verified by Iwagaki (1968) who gives results very close to the two
mentioned above.

Svendsen and Hansen (1977) compared the shoaling of cnoidal wave
with a set of careful experiments and claimed that other experimenters
(Wiegel, 1950, Iversen, 1951; Eagleson, 1956) carried out their ex-
periments on too steep a slope for the shoaling theory to be valid.
Furthermore, they calculate the damping due to viscous friction,
obviously important on a gentle slope. Svendsen and Hansen concluded
that if the wave height at depth d/Lo = 0.10 is matched between cnoidal
and linear, rather than the energy flux, the cnoidal theory predicts
the shoaling quite well, even close to breaking with small deepwater
wave steepness Ho/Lo < 3 to 4 percent but not beyond. Consistently,
with all theories, the wave just before breaking suddenly peaks up very
rapidly (Le Mehaute, 1971). In this range of values, all shoaling
theories (third Stokes, cnoidal and hyperbolic) tend to slightly under-
estimate the value of the shoaling coefficient. Subsequently, the cal-
culated breaking wave height tends to be underestimated. The linear
wave theory underestimates the breaking wave height most significantly,
sometimes by a factor of almost 2 (Fig. 9).

It is pertinent to remember that (a) the shoaling coefficient
given by the linear theory is valid beyond the limit generally con-
sidered as valid for a linear theory, and (b) the shoaling coefficient
given by third-order Stokesian wave is fairly well verified ex-
perimentally and actually very 'ose to the value given for the cnoidal
wave, even though, as in the c. ,e of the linear wave, free-surface
profile, pressure, velocity, and acceleration could be significantly
different.

In general, the linear theory can be applied throughout from deep
water to shallow water and then the linear breaking wave height is multi-
plied by a coefficient function of the beach slope (Koh and Le Mehaute,
1966). After the wave height, Ht, is determined as a function of the
deepwater wave height, Ho, and wave period, T (or deepwater wavelength
Lo), all other shallow-water characteristics (free-surface profile,

1' 18



Ut'6

16 r 73

14 H e. L..o 0104

I12-

10 •y .10- IbU,1
l

01 02 0504 050606I 1 2!

O/L. .10

l~b Ut,l

20 * 6

04 05 06 07 0 I0 20 30
dl L.

I0

(A 02 03 04 0 06 Os0 0 1Ii
d/Le Ut- T9 r~lom

H. IL. 0610

14 T r 6s
,,.IL./ 0191

LO *.. 06 00 1. 2. 30

d/L.

(2 03 04 06 06 10 14
d/L .

Xb
25' r-11418

x 
I

u,- 6,7 N./I. 057'2
' Tz2 48s

20L ,. U,1 , (./ 4. no .' r  ------

001 02 -- 03 04 05 06 6 0.._ 10 20 30

d/L. d/L.

Figure 7. Comparison of experimental shoaling coefficients with Stokes
third order (xb is the breaking location) (from Flick, 1978).

19



-L -

(A 0

u0

'w7 000

p. n
4, UI

0

000

00 0*" cd I
A 0d

.,0 0

0
o ~ aN0

200



particle velocity, acceleration, and pressure) follow by application
of one of the classical wave theories within the accuracy which is
determined for the chosen theory.

BREAKING INDEX
CURV

LINEAR
HOLINR EXPERIMENTAL

Figure 9. The linear theory underestimates the breaking wave height.

4. Nonlinear Wave Refraction.

It has been shown previously how to determine the shoaling co-
efficient, Ks = H/Ho, when the wave arrives perpendicular to the
bottom contour. This discussion deals with the refraction coefficient,
Kr. Refraction occurs when a wave arrives at an angle a with bottom
contours; then H/Ho = Ks Kr. For a straight parallel contour Snell's
law becomes

L = constant (6)" sin c.

which applies whether the wavelength, L, is expressed by a linear theory
or not.

Then 1/o/

K = - (7)
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which also applies for nonlinear as well as for linear theory. The
subscript o refers to deepwater wave characteristics.

In many cases, the refraction method provides a reasonably
accurate measure of the changes waves undergo on approaching a coast.
However, if the angle of a wave ray with the bottom contour is large
(i.e., larger than 700), minor error in the value of the incident
angle leads to a large error in direction angle a in shallow water.
Also, accuracy as far as height changes are concerned cannot be ex-
pected where bottom slopes are steeper than 1/10. No strict limit
has been set, but the accuracy of wave heights derived from orthogonals
that bend sharply is questionable. In short, refraction coefficients
which are quite different from unity, such as Kr < 0.5 and Kr > 1.5,
must be doubted (Whalin, 1971).

Nonlinear effects, having an effect on wavelength, phase and
group velocity and energy flux, subsequently have an effect on wave
refraction. This problem has been examined by Chu (1575) who used a
mix of three theories, i.e., the first-order cnoidal theory of Korteweg
and DeVries (1895), the second-order hyperbolic wave of Iwagaki (1968),
and the Stokes third-order wave as given by Le Mehaute and Webb (1964),
which led to some inconsistencies in approximations. Skovgaard and
Petersen (1977) used instead the first-order cnoidal theory of Svendsen
(1974) and the stream function wave theories of Dean (1970).

Theoretically, it is possible to express phase velocities as a
function of the relative wave heights from nonlinear wave theories.
For example, the deepwater wavelength at a third order Stokesian
approximation and the breaking wavelength by a cnoidal or hyperbolic
wave theory can be conveniently expressed. However, it is interesting
that due to deformation of wave profile on a sloped bottom, the simple
linear theory has been verified (experimentally) quite well (Ippen,
1966). Wavelengths given by linear and cnoidal theories are compared
in Figure 10. Although the cnoidal theory predicts wave height well up
to breaking, it overpredicts wavelengths significantly. Cnoidal theory,
in fact, predicts an increase in wavelength for a decrease in depth
when the relative height, 1t/d, is sufficiently large. This increase
is not reflected by known data (Ippen, 1966) which are fitted quite
well by linear theory (Fig. 11).

III. BREAKING WAVE CHARACTERISTICS ON A SLOPED
PLANE BEACH

1. Review of Previous Work.

The determination of lcngshore currents and sediment transport
depends crucially on the characteristics of the breaking wave field.
The wave energy transport, or energy flux, is of particular importance
such that accurate determination of wave height, wavelength, depth at
breaking, and breaking wave angle becomes essential.

This section deals with the practical aspects of determining
the breaking wave characteristics when certain deepwater character-
istics are given. The objective is to derive and present results
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1966; used with the permission of McGraw-
Hill Book Company).

23



consistent with presenL knowledge and in a readily usable form.

d The general problem would require the determination of the
shoaling and refraction of a multidirectional wave spectrum from deep
water over a randomly varying bottom topography until breaking occurs.
Although such an analysis is possible, it is much too complicated and
would have to be dealt with on a case by case basis using either
manual or computer methods.

A significant and useful simplification is achieved by assuming
the bottom to be a uniformly sloped plane. This allows bottom vari-
atiorns to be described by a single parameter, i.e., the bottom slope
S. The refraction process is then described globally by Snell's law
Tais discussion deals only with monochromatic waves under the usual
assumption that the wave period remains constant, and that friction
and reflection are ignored.

iI
To obtain accurate predictions it is necessary to have a wave theory

which is applicable up to the point of breaking. A lack of knowledge
of the actual breaking process requires the use of an empirical
breaking criterion to determine the point of breaking. A study by
Le Mehaute and Koh (1967) evaluated the Stokes first-, third-, and

2.4 fifth-order theories and compared the Miche (1944) breaking criterion
with an empirically derived equation. One of these equations was
detived by fitting a number of experimental data points covering the
range 0.02 < S < 0.2 and 0.002 < Ho/L o < 0.09. This .equation ex-
plicitly accounts for beach slope and is

f -1/4
b = 0.76 S1/7 0 (8)
0 0

p4 Since equation (8) is based on observed data it takes into account
nonlinear effects such as wave height peak-up just before breaking.
In applying this equation to waves arriving at an angle to the shore,
T, Mehaute and Koh (1967) corrected the bottom slope for the angle of
incidence; however, they neglected to replace the deepwater wave
height with its unrefracted value.

Subsequently, a new and easier appioach to compute cnoidal
waves was presented by Svendsen (1974)., Brink-Kjaer and Jonsson
(1973) showed that near breaking the water depth is usually so shallow
that cnoidal theory applies. Indeed, it has been found that wave
height is described well by cnoidal theory in the area close to and
before breaking.

In a recent report, Ostendorf and Madsen (1979) propose to use
cnoidal and linear Stokes wave theories in their respective areas of
applicability. A transition between the two theories which assumes
continuous variation of energy flux and phase velocities is also
presented. Ostendorf and Madsen further suggest the use of an em-
pirical breaking criterion which is sensitive to bottom slope and
depth-varying wave parameters, i.e.,
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H b= 0.14 tanh {(0.8 + SS) 2rdb/Lb }  S < 0.1

(9)~H b
b 0.14 tanh {(0.13) 2rdb/Lb} S > 0.1

To obtain the breaking wave characteristics, the two offshore
parameters (sin c/C*, C4) must be known where

= angle of incidence

C = wave phase speed C* = C/(gT)

. g = gravity acceleration

T = wave period

C g (H2 nsna}-1/4c4 Tr{(-) n sin ))-14

d = stillwater depth
1 2kd )

= + sinh2kd

k =2IT/L.

L = wavelength
1

In the deepwater limit this implies that wave height, Ho, angle
of incidence, ao, and wave period must be known independently. The
solution requires an iteration process and nomographs are presented
to facilitate the operations.

The method for determining breaking wave characteristics sug-
gested by Ostendorf anO 'Madsen (1979) has been compared with experi-
mental data (Kamphuis, 1963), and it was found that the predicted
breaking wave angle is V: larle, especially for smaller wave steep-
nesses (see Table 1). 11its i6 eksi1y explained when considering the
plot of wavelength transfoxTation shown in Figure 10. Although
cnoidal theory predicts wave !,igiat well up to breaking, it overpre-
dicts wavelengths significantly. Cnoldal theory, in fact, predicts
an increase in wavelength and therefor.e, also in wave angle when H/d
is sufficie'tly large. This incre-se is, as previously mentioned,
not reflected by known data (Ippen, 1966; Fig. 11), which are fitted
quite well by linear theory. As another consequence, the wave break-
ing criterion, again, a result which is difficult to defend.

Dean (1974) determined wave breaking angles using his stream
function theory, but with a slope-independent semiempirical breaking
criterion. A comparison of his results with the experimental ob-
servations of Kamphuis (1963) is al!,o presented in Table 1. The
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predictions are consistently too high, especially for smaller wave
steepness, where predicted and observed ab differ by a factor of
approximately 2.

Table 1. Cc'marison of measured and predicted
breaking wave angles. 1

HO- 0.0175 0.04 0.053 0.062

0

200 400 600 200 400 200 400 200 400

ab Kamphuis 50 90 120 80 160 100 200 110 220
(1963)S(b Ostendorf 100 18.60 24.30 12.80 24.30 13.90 26.50 14.50 28.80

and Madsen
(1979)

ab Dean 9.50 190 22°  13°  250 14°  27°  14.50 280

(1974)

IBeach slope, S = .1

2. Solution Approach.

To obtain reliable prediction of breaking wave characteristics,
this study proposes to use cnoidal theory to describe the transformation
of wave height while wavelength will be transformed using either linear
wave theory or third-order Stokes theory. The cnoidal wavelength is
then considered as an auxiliary parameter which cannot be identified as
the physical wavelength. Linear wave theory is simpler to use; however,
to retain some nonlinear effect in the transformation of wavelength the
third-order Stokes theory is also included. The wavelength computed
using the cnoidal third-order Stokes theory is shown in Figure 11.

Due to the large wave heights near breaking, a higher order approxi-
mation to cnoidal waves given by Iwagaki (1968) was considered. A more
detailed discussion of this "hyperbolic" wave theory is given in the
Appendix. Note that this higher order theory suffers from the same prob-
lem of inhomogeneous convergence as, for example, plagues fifth-order
Stokes waves (Le Mehaute and Koh, 1966), and therefore gives poorer
results than the first-order cnoidal theory near breaking.

The computation and shoaling of cnoidal waves have been given by
Svendsen (1974) and Svendsen and Brink-Kjaer (1972). It is convenient
to define the parameter

HL2
c 16 2 (10)U: -7 3 MK()(0

where

H = wave height

Lc = cnoidal wavelength parameter
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d = stillwater depth

K(m) = complete elliptic integral of the first kind

The dispersion relationship may be written as

L d (11)

Lo0 0

The deepwater wavelength L ° = T2 and A = A(m) - _ 1 L
2rm MK

The complete elliptic integral of the second kind is designated E.

Invoking energy flux conservation between wave rays and using
linear theory in deep water, the wave height transformation is given
as

H Lr\2/3 (HH\ 1  1/3 (\-
Ho  (6 LH (12)

In equation (12) fH = fH (U) --- U-1/ 3 . B_2/3

and

B = B(m) 1- [2 (m2 - 5m + 2 + (4m - 2)
m K

(l - _ KO(13)

Equations (12) and (13) define the shoaling of cnoidal waves and are
used to determine the shoaling coefficient.

To compute the wavelength and refraction the Stokes wave theory
is used. Linear waves are described by the dispersion relationship

Lo = tanh 2n 
(14)

0 1
For the third-order Stokes approximation from Le Mehaute and Webb (1964)

L3 n2d 2
2= 2- tanh - (1 + C1 X (15)

T 2 2n L313

L3o2 (16)

2- T (1 + X30 )T2  T

where

33 7_rHo (
X 30 +A 3 o (17)
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B 3 iH (18)33 3 3 L 3

8cosh4k3d - 8cosh2k 3d + 9

8sinh4k3d

* "3(8cosh 6k d + 1)

B33 64sinh 6k d (20)

3

and

k3  2 LTr (21)

Refraction is described by Snell's law

"1 L =sina (22)
Lo  sinao

and the refraction coefficient

R (23)

where a = angle of wave with shoreline. Also, when refraction is included

the deepwater wave height in the above expressions should be replaced by
its unrefracted value.

te Finally, the point of breaking is determined by a modified form of
the empirical breaking criterion (eq. 8). To adapt the formula to waves
approaching at an oblique angle, the bottom slope and deepwater wave

height are replaced by S cosab and Ho (cosco/cosab)1/2 , respectively.
The breaking criterion is then obtained by

H b 17 HI-1/4
=0.76 S Cos 1./7 6 (0o (24)

00

or

H= Kr 0.76 cos1/7 H 0 \ -(14 K-/4 (25)r H ab KS-/ ) r

Rewriting equation (25) using Hb/Ho = KsKr, where Ks is the shoaling co-
efficient yields

f, H -1/4 -1/8 15/16
Kb = 0.76 o- cos a cos ab (26)

T00

Equation (?6) gives the form of the breaking criterion used in this study.
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An explicit solution for the breaking wave characteristics cannot

be obtained from equations (11) to (23) and equation (26). A numerical

solution is required and it becomes important to reduce the number of

independent parameters as much as possible. By straightforward manipu-

lation of the equations, only three independent parameters need to be

known: deepwater wave steepness, Ho/Lo; beach slope, S; and deepwater

incident wave angle, ao .

A computer algorithm is constructed to solve the problem. The

basic process consists of the following steps:

H
(1) Give values for 0 S, ao

0 Llb

(2) Assume Ks-=Kr=A=l and or L3b = 0.4

SHb 
o

(3) Guess a value for Ub-

(4) Find

L c H\ by
Ilio h+ A)

Lob b K KrLo 2i ( db

Hb Ho Lb-I
(5a) Determine - = K K r V-o

lb 1 0 

and klb db= 2a 
Hb
lb b-I

Hb Ho~~~
b r~ 0 (L3 f(bb) Determine - = K K x -L3--b  s r L 0

('N'b Hb

and k3b db = T b

Lb
(6a) Find Llb = tanh klb db

10

(6b) Find -= tanh k d 13

L3o b l+X2 031

(7) Find ab from equation (22), using wavelength

ratio from step (6), and find Kr from equation

(16)
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(8) Determine U = b x L) 2

(9) Find m and K(m) satisfying equation (10) using
polynomial approximation of K given in Abramovitz
and Stegun (1964)

(10) Determine E, A, B, fH and then K from equation
(12) s

(11) Go back to step (4) until Ks remains constant

(12) Compare the obtained K value with value computed
from equation (26). If different, go back to step
(3)

3. Results.

The wave breaking angle, ab, as computed with linear, cnoidal-
linear, and cnoidal third-order Stokes approaches, is compared with the
experimental data of Kamphuis (1963) as shown in Le Mehaute and Koh (1967)
and Figure 12. These are apparently the only data on ab and are ob-
tained for a single bottom slope, S = 0.1. For Ho/L o = 0.0175, linear
theory gives the best fit to the data. On the other hand, cnoidal
linear theory provides a better fit for the larger steepnesses, Ho/Lo =
0.053 and 0.062. Unfortunately, it is not possible to draw any de-
finite conclusions from the limited data. However, it appears that
linear theory provides the best estimate of wavelength irrespective
of wave steepness, as found by Eagleson and Dean (Ippen, 1966). Also,
for large wave steepness, cnoidal theory predicts the wave height quite
accurately up to the point of breaking.

For a given beach slope the waves break at increasing relative
depth ratios, d/L, as the deepwater steepness increases. For large
enough Ho/Lo, the cnoidal theory is no longer valid since it predicts
a nonphysical complex wave height (Svendsen, 1974). The critical
deepwater wave steepness for which the cnoidal theory ceases to be
valid has been determined for five different bottom slopes (Table 2).
This critical value is only weakly sensitive to the magnitude of ao.
For Ho/Lo greater than the critical value, a different wave theory
such as Dean's (1974) or third-order Stokes (Le Mehaute and Koh, 1967)
must be used.

In Figures 13 to 17, the variation of breaking .,ave angles

versus deepwater wave angle with HO/Lo and S as parameters is de-
picted as computed using the .noidal-linear theory. Similar results
for linear theory are shown in Figure 18, when Ho/L o and S are com-
bined into a sifgle parameter.
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Table 2. Limit for validity of cnoidal
theory for normal incidence.

.01 .046 0.385

.02 .076 0.576

.03 .107 0.741

.04 .139 0.872

.05 .173 0.993

45

40. ottom Slope S. 001

35

30
i I0

0 10 20 30 40 50 6o io o 90

Figure 13. Wave breaking angle, ab, as a function of
deepwater wave angle, ao , and deepwater
steepness, H./L., on a bottom slope, S 0.01.
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Figure 14. Wave breaking angle, abl, as a function of
deepwater wave angle, ao,, and deepwater
steepness, I-1,/L 0,, on a bottom slope, S =0:02.
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Figure 15. Wave breaking angle, Ob, as a function of
deepwater wave angle, ao, and deepwater
steepness, H0/L0 , on a bottom slope, S =0.03.
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Figure 16. Wave breaking angle, ab , as a function of
deppwater wave angle, cao , and deepwater
steepness, Ho/L o , on a bottom slope, S = 0.05.
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Figure 17. Wave breaking angle, ab , as a function of
deepwater wave angle, ao, and deepwater
steepness, tto/Lo, on a bottom slope, S 0.10.

34



25 N

202

20 20020

01715 0 10--- --- - \

10
50050

0025

0,,,

0 0 20 30 40 50 60 ?0 so so

Figure 18. Prediction of wave breaking angles using

linear theory.

The remaining breaking wave characteristics are easily determined
as shown in the following example:

H
1010

Given: 7o = 0.02 S = 0.03 and a o

0 d b  Hb
Find: b and -' F

0 0

(a) Cnoidal-linear

From Figure 15 is found

- = 150.9

Using Snell's law

. Lb sinl
LF sin=b 0.426T 0 = TI n oto 0

The wave height can be found from the breaking criterion

H -1/4 3/4
H- 0.76 cos 1"7  0 K = 1.118
H Ctb- J/7) Kr
S0

5 Finally, the depth of breaking is computed from the dispersion
4 relationship, which is solved for

_LbS1 _ +

b db= n = 0.455JLb

L0
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or
d d L
b db b b
Lb 0.0724 and l b o= 0.0308
L bL Lo

(b) Linear theory

H
Determine = 0.148

A/7
L S

0

From Figure 18

a = 12.20

Lb sinab
Snell's law 7 = sin_ = 0.329

0 0
t1b H -1/4 3/4

Wave height "--= 0.76 cos I/ 7 ab (--- 1/4 K 3 1.115
H 0 r S 4/715o LS '

0

Depth at breaking

kd,1 1+_ -

k b db In 0 0.3417

2Lb

or 0

d r a n we t .0544 and d b 0.0179Lb  L L L

IV. SUNARY AND CONCLUSIONS

It appears that no single wave theory accurately predicts the trans-
formation of a wave from deep to shallow water. In shallow water, cnoidal
theory successfully describes the shoaling of wave height but overestimates
the wave celerity and wavelength. All previous studies emphasize an accurate
determination of wave height, but little attention is paid to the wavelength.

When considering longshore currents and sediment transport the angle
of wave breaking becomes a parameter of high importance and, therefore, also
the wave refraction process which is intimately connected with wavelength.

In this study a "hybrid" wave theory is proposed, consisting of
cnoidal wave height and linear wavelength transformation in the regime where
cnoidal theory applies. In comparison with existing data this theory is
found to predict wave height and wavelength better than previous theories,
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especially for larger wave steepnesses. More definite conclusions must
await new experimental data. This basic information seems to be missing
in the existing literature.

Nomographs are presented for determining the breaking wave
characteristics for given deepwater characteristics and bottom slope for
a plane beach.

The remaining difficulties encountered in the shoaling and re-
fraction of a monochromatic wave are further amplified when dealing with
a more realistic directional spectrum of waves. What are the equivalent
monochromatic breaking wave characteristics that produce the same sediment
transport or longshore current? This question seems to be one of the more
important to face in the future research.

I

t * .
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APPENDIX

Hyperbolic Wave Shoaling

It is well known that near breaking surface gravity water waves are
highly nonlinear and therefore not well characterized by linear theory.
For prediction of breaking wave characteristics it is necessary to use
higher order wave theories and, in particular, a higher order cnoidal wave
solution could appear to be attractive because of the improved fit to data
found when using first-order cnoidal theory. Iwagaki (1968) derived a
practical asymptotic solution to second-order cnoidal waves called
"hyperbolic waves." This approximation takes m = 1 and E(m) = 1 for
K(m) > 3 where K(m) and E(m) are the complete elliptical integrals of the
first and second kind.

If the wave height transformation is written in the usual manner
as a product between a shoaling and refraction coefficient

H =H K . K (A-l)
O S r

then Iwagaki derived 2

1l~/3 ld4 o/ 3 IHI 2
K t dN- jl 2  OJ

5L
Ks = I+ 7TL

1 H 1 1 -1/3 O 1 2m/3

, ~~ ~ T + 12t T d a 1 6

-2/3
(2 5 L 1,31 29 1 13 1

Ito 
(A-2)

where

d = water depth

L = Z (1 + X2) deepwater wavelength(third-order Stokes
S0 wave)

H' = unrefracted deepwater wave height
O0

K = complete elliptic integral

H = wave height

dt  = d(l1 d + 1 H 2 }= water depth under trough
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The parameter X is determined from

Ho 1(A3

H L 32Ao=7 ,0*3X2+1 (A3

0 o

and Iwagaki found by einpirical curve fitting

1 H
a = 1.3, n 2 and m = for < 0.55

3 H
a = 0.54, n and m = 1 for > 0.55

Such that the elliptic integral, K, could be approximated by

K r€ H 1 /2  H n m
Tg - (d {I - a (d) (A-4)

Finally, in hyperbolic waves the wavelength is given by

d 1/2 2 HI 2L = r2,f (d (I ( T 0 ( 1 1
oo3111

0 0 0

H n m 1 H 5 It-51
x a 4l } {1 (1 + d) T (A-5)

Again, it should be pointed out that equations (A-2) to (A-S) are only valid
for K > 3.

To evaluate the hyperbolic wave theory the shoaling factor Ks is com-
pared with data and first-order cnoidal theory (Brink-Kjaer and Jonsson,
(1973). The results are shown in Figure A-1.

It is evident that the results given by the hyperbolic theory are
worse than those obtained using linear cnoidal theory. For large wave
steepness the hyperbolic theory exhibits a decrease in Ks near breaking
similar to fifth-order Stokes waves which is also due to nonhomogeneous
convergence of the perturbation series. Finally, the wavelength predicted
by hyperbolic theory (not shown here) is quite close to the cnoidal wave-
length which is in itself questionable as examined earlier. Further
attempts at using hyperbolic wave theory to predict breaking wave character-
istics were abandoned because of the above shortcomings.
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